Disposable screen printed sensor for the electrochemical detection of delta-9-tetrahydrocannabinol in undiluted saliva

نویسندگان

  • Ceri Wanklyn
  • Dan Burton
  • Emma Enston
  • Carrie-Ann Bartlett
  • Sarah Taylor
  • Aleksandra Raniczkowska
  • Murdo Black
  • Lindy Murphy
چکیده

BACKGROUND Cannabis has an adverse effect on the ability to drive safely, therefore a rapid disposable test for Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the psychoactive component of cannabis, is highly desirable for roadside testing. RESULTS A screen printed carbon electrode is used for the N-(4-amino-3-methoxyphenyl)-methanesulfonamide mediated detection of Δ(9)-THC in saliva. Mediator placed in an overlayer was galvanostatically oxidized and reacted with Δ(9)-THC to give an electrochemically active adduct which could be detected by chronoamperometric reduction. Detection of 25-50 ng/mL Δ(9)-THC spiked into undiluted saliva was achieved with a response time of 30 s. A trial of the sensors with four cannabis smokers showed sensitivity of 28 %, specificity of 99 % and accuracy of 52 %. CONCLUSIONS Rapid electrochemical detection of Δ(9)-THC in undiluted saliva has been demonstrated using a disposable sensor, however the sensitivity is lower than acceptable. Further optimization of the assay and sensor format is required to improve the sensitivity of response to Δ(9)-THC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva

BACKGROUND Methamphetamine has an adverse effect on the ability to drive safely. Police need to quickly screen potentially impaired drivers therefore a rapid disposable test for methamphetamine is highly desirable. This is the first proof-of-concept report of a disposable electrochemical test for methamphetamine in undiluted saliva. RESULTS A screen printed carbon electrode is used for the N,...

متن کامل

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

متن کامل

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

متن کامل

An electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture

In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...

متن کامل

An electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture

In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016